Trains a Bayesian Additive Regression Tree (BART) model using package bartMachine and validates it
s.BART(x, y = NULL, x.test = NULL, y.test = NULL, x.name = NULL,
y.name = NULL, n.trees = c(100, 200), k_cvs = c(2, 3),
nu_q_cvs = list(c(3, 0.9), c(10, 0.75)), k_folds = 5,
n.burnin = 250, n.iter = 1000, n.cores = rtCores,
upsample = FALSE, upsample.seed = NULL, print.plot = TRUE,
plot.fitted = NULL, plot.predicted = NULL,
plot.theme = getOption("rt.fit.theme", "lightgrid"), question = NULL,
rtclass = NULL, verbose = TRUE, trace = 0, outdir = NULL,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE), java.mem.size = 12,
...)Numeric vector or matrix / data frame of features i.e. independent variables
Numeric vector of outcome, i.e. dependent variable
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in x
Numeric vector of testing set outcome
Character: Name for feature set
Character: Name for outcome
Logical: If TRUE, upsample cases to balance outcome classes (for Classification only) Caution: upsample will randomly sample with replacement if the length of the majority class is more than double the length of the class you are upsampling, thereby introducing randomness
Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed)
Logical: if TRUE, produce plot using mplot3
Takes precedence over plot.fitted and plot.predicted
Logical: if TRUE, plot True (y) vs Fitted
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires x.test and y.test
String: "zero", "dark", "box", "darkbox"
String: the question you are attempting to answer with this model, in plain language.
String: Class type to use. "S3", "S4", "RC", "R6"
Logical: If TRUE, print summary to screen.
Integer: If higher than 0, will print more information to the console. Default = 0
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if save.mod is TRUE
Logical: if TRUE, sets bartMachine's serialize to TRUE and saves model to outdir
Additional arguments to be passed to bartMachine::bartMachine
Object of class rtemis
If you are having trouble with rJava in Rstudio on macOS, see my solution here:
https://support.rstudio.com/hc/en-us/community/posts/203663956/comments/249073727
bartMachine does not support case weights
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST,
s.ADDTREE, s.BAYESGLM,
s.BRUTO, s.C50,
s.CART, s.CTREE,
s.DA, s.ET,
s.EVTREE, s.GAM.default,
s.GAM.formula, s.GAMSEL,
s.GAM, s.GBM3,
s.GBM, s.GLMNET,
s.GLM, s.GLS,
s.H2ODL, s.H2OGBM,
s.H2ORF, s.IRF,
s.KNN, s.LDA,
s.LM, s.MARS,
s.MLRF, s.MXN,
s.NBAYES, s.NLA,
s.NLS, s.NW,
s.POLYMARS, s.PPR,
s.PPTREE, s.QDA,
s.QRNN, s.RANGER,
s.RFSRC, s.RF,
s.SGD, s.SPLS,
s.SVM, s.TFN,
s.XGBLIN, s.XGB
Other Tree-based methods: s.ADABOOST,
s.ADDTREE, s.C50,
s.CART, s.CTREE,
s.ET, s.EVTREE,
s.GBM3, s.GBM,
s.H2OGBM, s.H2ORF,
s.IRF, s.MLRF,
s.PPTREE, s.RANGER,
s.RFSRC, s.RF,
s.XGB