Trains a Deep Neural Net using H2O (http://www.h2o.ai)
Check out the H2O Flow at [ip]:[port]
, Default IP:port is "localhost:54321"
e.g. if running on localhost, point your web browser to localhost:54321
s.H2ODL(x, y = NULL, x.test = NULL, y.test = NULL, x.valid = NULL,
y.valid = NULL, x.name = NULL, y.name = NULL, ip = "localhost",
port = 54321, n.hidden.nodes = c(20, 20), epochs = 1000,
activation = "Rectifier", mini.batch.size = 1,
learning.rate = 0.005, adaptive.rate = TRUE, rho = 0.99,
epsilon = 1e-08, rate.annealing = 1e-06, rate.decay = 1,
momentum.start = 0, momentum.ramp = 1e+06, momentum.stable = 0,
nesterov.accelerated.gradient = TRUE, input.dropout.ratio = 0,
hidden.dropout.ratios = NULL, l1 = 0, l2 = 0,
max.w2 = 3.4028235e+38, nfolds = 0, initial.biases = NULL,
initial.weights = NULL, loss = "Automatic", distribution = "AUTO",
stopping.rounds = 5, stopping.metric = "AUTO", upsample = FALSE,
upsample.seed = NULL, na.action = na.fail, n.cores = rtCores,
print.plot = TRUE, plot.fitted = NULL, plot.predicted = NULL,
plot.theme = getOption("rt.fit.theme", "lightgrid"), question = NULL,
verbose = TRUE, trace = 0, outdir = NULL,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE), ...)
Vector / Matrix / Data Frame: Training set Predictors
Vector: Training set outcome
Vector / Matrix / Data Frame: Testing set Predictors
Vector: Testing set outcome
Vector / Matrix / Data Frame: Validation set Predictors
Vector: Validation set outcome
Character: Name for feature set
Character: Name for outcome
String: IP address of H2O server. Default = "localhost"
Integer: Port number for server. Default = 54321
Integer vector of length equal to the number of hidden layers you wish to create
Integer: How many times to iterate through the dataset. Default = 1000
String: Activation function to use: "Tanh", "TanhWithDropout", "Rectifier", "RectifierWithDropout", "Maxout", "MaxoutWithDropout". Default = "Rectifier"
Float: Learning rate to use for training. Default = .005
Logical: If TRUE, use adaptive learning rate. Default = TRUE
Float: Learning rate annealing: rate / (1 + rate_annealing * samples). Default = 1e-6
Float (0, 1): Dropout ratio for inputs
Vector, Float (0, 2): Dropout ratios for hidden layers
Float (0, 1): L1 regularization (introduces sparseness; i.e. sets many weights to 0; reduces variance, increases generalizability)
Float (0, 1): L2 regularization (prevents very large absolute weights; reduces variance, increases generalizability)
Logical: If TRUE, upsample cases to balance outcome classes (for Classification only) Caution: upsample will randomly sample with replacement if the length of the majority class is more than double the length of the class you are upsampling, thereby introducing randomness
Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed)
How to handle missing values. See ?na.fail
Integer: Number of cores to use
Logical: if TRUE, produce plot using mplot3
Takes precedence over plot.fitted
and plot.predicted
Logical: if TRUE, plot True (y) vs Fitted
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires x.test
and y.test
String: "zero", "dark", "box", "darkbox"
String: the question you are attempting to answer with this model, in plain language.
Logical: If TRUE, print summary to screen.
Integer: If higher than 0, will print more information to the console. Default = 0
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if save.mod
is TRUE
Logical. If TRUE, save all output as RDS file in outdir
save.mod
is TRUE by default if an outdir
is defined. If set to TRUE, and no outdir
is defined, outdir defaults to paste0("./s.", mod.name)
Additional parameters to pass to h2o::h2o.deeplearning
rtMod object
x & y form the training set. x.test & y.test form the testing set used only to test model generalizability. x.valid & y.valid form the validation set used to monitor training progress
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.BAYESGLM
, s.BRUTO
,
s.C50
, s.CART
,
s.CTREE
, s.DA
,
s.ET
, s.EVTREE
,
s.GAM.default
, s.GAM.formula
,
s.GAMSEL
, s.GAM
,
s.GBM3
, s.GBM
,
s.GLMNET
, s.GLM
,
s.GLS
, s.H2OGBM
,
s.H2ORF
, s.IRF
,
s.KNN
, s.LDA
,
s.LM
, s.MARS
,
s.MLRF
, s.MXN
,
s.NBAYES
, s.NLA
,
s.NLS
, s.NW
,
s.POLYMARS
, s.PPR
,
s.PPTREE
, s.QDA
,
s.QRNN
, s.RANGER
,
s.RFSRC
, s.RF
,
s.SGD
, s.SPLS
,
s.SVM
, s.TFN
,
s.XGBLIN
, s.XGB
Other Deep Learning: d.H2OAE
,
p.MXINCEPTION
, s.MXN
,
s.TFN