Train an ensemble of Neural Networks to perform Quantile Regression using qrnn
s.QRNN(x, y = NULL, x.test = NULL, y.test = NULL, x.name = NULL,
y.name = NULL, n.hidden = 1, tau = 0.5, n.ensemble = 5,
iter.max = 5000, n.trials = 5, bag = TRUE, lower = -Inf,
eps.seq = 2^(-8:-32), Th = qrnn::sigmoid,
Th.prime = qrnn::sigmoid.prime, penalty = 0, trace = T,
print.plot = TRUE, plot.fitted = NULL, plot.predicted = NULL,
plot.theme = getOption("rt.fit.theme", "lightgrid"), question = NULL,
rtclass = NULL, verbose = TRUE, outdir = NULL,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE), ...)
Numeric vector or matrix / data frame of features i.e. independent variables
Numeric vector of outcome, i.e. dependent variable
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in x
Numeric vector of testing set outcome
Character: Name for feature set
Character: Name for outcome
Integer. Number of hidden nodes
Float. tau-quantile. Defaults to .5
Integer. Number of NNs to train
Integer. Max N of iteration of the optimization algorithm
Integer. N of trials. Used to avoid local minima
Logical. Should bagging be used?
Integer: If higher than 0, will print more information to the console. Default = 0
Logical: if TRUE, produce plot using mplot3
Takes precedence over plot.fitted
and plot.predicted
Logical: if TRUE, plot True (y) vs Fitted
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires x.test
and y.test
String: "zero", "dark", "box", "darkbox"
String: the question you are attempting to answer with this model, in plain language.
String: Class type to use. "S3", "S4", "RC", "R6"
Logical: If TRUE, print summary to screen.
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if save.mod
is TRUE
Logical. If TRUE, save all output as RDS file in outdir
save.mod
is TRUE by default if an outdir
is defined. If set to TRUE, and no outdir
is defined, outdir defaults to paste0("./s.", mod.name)
Additional arguments to be passed to qrnn::qrnn.fit
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.BAYESGLM
, s.BRUTO
,
s.C50
, s.CART
,
s.CTREE
, s.DA
,
s.ET
, s.EVTREE
,
s.GAM.default
, s.GAM.formula
,
s.GAMSEL
, s.GAM
,
s.GBM3
, s.GBM
,
s.GLMNET
, s.GLM
,
s.GLS
, s.H2ODL
,
s.H2OGBM
, s.H2ORF
,
s.IRF
, s.KNN
,
s.LDA
, s.LM
,
s.MARS
, s.MLRF
,
s.MXN
, s.NBAYES
,
s.NLA
, s.NLS
,
s.NW
, s.POLYMARS
,
s.PPR
, s.PPTREE
,
s.QDA
, s.RANGER
,
s.RFSRC
, s.RF
,
s.SGD
, s.SPLS
,
s.SVM
, s.TFN
,
s.XGBLIN
, s.XGB