Train a Random Forest for Regression, Classification, or Survival Regression
using randomForestSRC
s.RFSRC(x, y = NULL, x.test = NULL, y.test = NULL, x.name = NULL,
y.name = NULL, n.trees = 1000, weights = NULL, ipw = TRUE,
ipw.type = 2, upsample = FALSE, upsample.seed = NULL,
bootstrap = "by.root", mtry = NULL, importance = TRUE,
proximity = TRUE, nodesize = if (!is.null(y) && !is.factor(y)) 5 else
1, nodedepth = NULL, na.action = "na.impute", trace = FALSE,
print.plot = TRUE, plot.fitted = NULL, plot.predicted = NULL,
plot.theme = getOption("rt.fit.theme", "lightgrid"), question = NULL,
rtclass = NULL, verbose = TRUE, outdir = NULL,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE), ...)
Numeric vector or matrix of features, i.e. independent variables
Numeric vector of outcome, i.e. dependent variable
(Optional) Numeric vector or matrix of validation set features
must have set of columns as x
(Optional) Numeric vector of validation set outcomes
Integer: Number of trees to grow. The more the merrier.
String:
Integer: Number of features sampled randomly at each split
Optional. Path to directory to save output
Additional arguments to be passed to randomForestSRC::rfsrc
Object of class rtMod
For Survival Regression, y must be an object of type Surv
, created using
survival::Surv(time, status)
mtry
is the only tunable parameter, but it usually only makes a small difference
and is often not tuned.
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.BAYESGLM
, s.BRUTO
,
s.C50
, s.CART
,
s.CTREE
, s.DA
,
s.ET
, s.EVTREE
,
s.GAM.default
, s.GAM.formula
,
s.GAMSEL
, s.GAM
,
s.GBM3
, s.GBM
,
s.GLMNET
, s.GLM
,
s.GLS
, s.H2ODL
,
s.H2OGBM
, s.H2ORF
,
s.IRF
, s.KNN
,
s.LDA
, s.LM
,
s.MARS
, s.MLRF
,
s.MXN
, s.NBAYES
,
s.NLA
, s.NLS
,
s.NW
, s.POLYMARS
,
s.PPR
, s.PPTREE
,
s.QDA
, s.QRNN
,
s.RANGER
, s.RF
,
s.SGD
, s.SPLS
,
s.SVM
, s.TFN
,
s.XGBLIN
, s.XGB
Other Tree-based methods: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.C50
, s.CART
,
s.CTREE
, s.ET
,
s.EVTREE
, s.GBM3
,
s.GBM
, s.H2OGBM
,
s.H2ORF
, s.IRF
,
s.MLRF
, s.PPTREE
,
s.RANGER
, s.RF
,
s.XGB