Train an SVM learner using e1071::svm
s.SVM(x, y = NULL, x.test = NULL, y.test = NULL, x.name = NULL,
y.name = NULL, grid.resample.rtset = rtset.resample("kfold", 5),
grid.search.type = c("exhaustive", "randomized"),
grid.randomized.p = 0.1, class.weights = NULL, ipw = TRUE,
ipw.type = 2, upsample = FALSE, upsample.seed = NULL,
kernel = "radial", degree = 3, gamma = NULL, coef0 = 0,
cost = 1, probability = TRUE, metric = NULL, maximize = NULL,
plot.fitted = NULL, plot.predicted = NULL, print.plot = TRUE,
plot.theme = getOption("rt.fit.theme", "lightgrid"),
n.cores = rtCores, question = NULL, rtclass = NULL,
verbose = TRUE, grid.verbose = TRUE, outdir = NULL,
save.res = FALSE, osx.alert = FALSE,
save.mod = ifelse(!is.null(outdir), TRUE, FALSE), ...)
Numeric vector or matrix / data frame of features i.e. independent variables
Numeric vector of outcome, i.e. dependent variable
Numeric vector or matrix / data frame of testing set features
Columns must correspond to columns in x
Numeric vector of testing set outcome
Character: Name for feature set
Character: Name for outcome
List: Output of rtset.resample defining gridSearchLearn parameters.
Default = rtset.resample("kfold", 5)
String: Type of grid search to perform: "exhaustive" or "randomized". Default = "exhaustive"
Float (0, 1): If grid.search.type = "randomized"
, randomly run this proportion of
combinations. Default = .1
Float, length = n levels of outcome: Weights for each outcome class.
For classification, class.weights
takes precedence over ipw
, therefore set
class.weights = NULL
if using ipw
. Default = NULL
Logical: If TRUE, apply inverse probability weighting (for Classification only).
Note: If weights
are provided, ipw
is not used. Default = TRUE
Integer 0, 1, 2 1: class.weights as in 0, divided by max(class.weights) 2: class.weights as in 0, divided by min(class.weights) Default = 2
Logical: If TRUE, upsample cases to balance outcome classes (for Classification only) Caution: upsample will randomly sample with replacement if the length of the majority class is more than double the length of the class you are upsampling, thereby introducing randomness
Integer: If provided, will be used to set the seed during upsampling. Default = NULL (random seed)
String: "linear", "polynomial", "radial", "sigmoid"
[gS] Integer: Degree for kernel = "polynomial"
. Default = 3
[gS] Float: Parameter used in all kernels except linear
[gS] Float: Parameter used by kernels polynomial
and sigmoid
[gS] Float: Cost of constraints violation; the C constant of the regularization term in the Lagrange formulation.
String: Metric to minimize, or maximize if maximize = TRUE
during grid search.
Default = NULL, which results in "Balanced Accuracy" for Classification,
"MSE" for Regression, and "Coherence" for Survival Analysis.
Logical: If TRUE, metric
will be maximized if grid search is run. Default = FALSE
Logical: if TRUE, plot True (y) vs Fitted
Logical: if TRUE, plot True (y.test) vs Predicted.
Requires x.test
and y.test
Logical: if TRUE, produce plot using mplot3
Takes precedence over plot.fitted
and plot.predicted
String: "zero", "dark", "box", "darkbox"
Integer: Number of cores to use. Defaults to available cores reported by
future::availableCores()
, unles option rt.cores
is set at the time the library is loaded
String: the question you are attempting to answer with this model, in plain language.
String: Class type to use. "S3", "S4", "RC", "R6"
Logical: If TRUE, print summary to screen.
Logical: Passed to gridSearchLearn
Path to output directory.
If defined, will save Predicted vs. True plot, if available,
as well as full model output, if save.mod
is TRUE
Logical. If TRUE, save all output as RDS file in outdir
save.mod
is TRUE by default if an outdir
is defined. If set to TRUE, and no outdir
is defined, outdir defaults to paste0("./s.", mod.name)
Additional arguments to be passed to e1071::svm
[gS] denotes parameters that will be tuned by cross-validation if more than one value is passed. Regarding SVM tuning, the following guide from the LIBSVM authors can be useful: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf They suggest searching for cost = 2 ^ seq(-5, 15, 2) and gamma = 2 ^ seq(-15, 3, 2)
elevate for external cross-validation
Other Supervised Learning: s.ADABOOST
,
s.ADDTREE
, s.BART
,
s.BAYESGLM
, s.BRUTO
,
s.C50
, s.CART
,
s.CTREE
, s.DA
,
s.ET
, s.EVTREE
,
s.GAM.default
, s.GAM.formula
,
s.GAMSEL
, s.GAM
,
s.GBM3
, s.GBM
,
s.GLMNET
, s.GLM
,
s.GLS
, s.H2ODL
,
s.H2OGBM
, s.H2ORF
,
s.IRF
, s.KNN
,
s.LDA
, s.LM
,
s.MARS
, s.MLRF
,
s.MXN
, s.NBAYES
,
s.NLA
, s.NLS
,
s.NW
, s.POLYMARS
,
s.PPR
, s.PPTREE
,
s.QDA
, s.QRNN
,
s.RANGER
, s.RFSRC
,
s.RF
, s.SGD
,
s.SPLS
, s.TFN
,
s.XGBLIN
, s.XGB